Tampilkan postingan dengan label Perikanan. Tampilkan semua postingan
Tampilkan postingan dengan label Perikanan. Tampilkan semua postingan

Senin, 02 Mei 2011

The Luminous Fish Genetic Engineering

 Ikan Bercahaya Hasil Rekayasa Genetik

Sejenis ikan tropis yang memancarkan cahaya merah akan menjadi binatang peliharaan pertama yang direkayasa, demikian diungkapkan para ilmuwan. Ikan jenis zebra ini sesungguhnya dirancang sebagai detektor adanya racun-racun yang ada di alam.

Ikan bercahaya hasil rekayasa genetik
“Ikan ini semula dikembangkan untuk membantu menanggulangi polusi lingkungan,” kata Alan Blake dan rekan-rekannya dari Yorktown Technologies, perusahaan yang mendaftarkan ikan tersebut sebagai ikan peliharaan. “Mereka direkayasa agar memancarkan

Minggu, 01 Mei 2011

Sea cucumbers (Holothuria sp.)





Gamat or trepang or sea cucumber (Holothuria sp.) is the name given to Holothuroidea invertebrates that can be eaten. He is widespread in marine environments around the world, ranging from tidal zones to deep ocean, especially in the Indian Ocean and Western Pacific Ocean.
In the international journals, the term trepang or beche-de-mer is never used in topics keanegaragaman, biology, ecology and taxonomy. In

Biofuels from Marine Plankton






Phytoplankton, specifically algae and microalgae, could turn down the heat on the morality debate over using food crops to produce energy. Microalgae produce triglycerides that can be converted into biodiesel, and they generate yields 30-50 times that of land-based crops. They do not require large tracts of agricultural land, nor do they disrupt the food chain.
While several technological stumbling blocks to producing algal biodiesel on a commercial scale remain, the obvious benefits over other renewable fuels keep investors and researchers interested. What’s more, the obstacles are well within the reach of innovators, especially when compared to the problems surrounding other biofuels, such as the financial, environmental, and social implications of using food crops for fuel.
  • Biodiesel’s Attraction
Biodiesel has been gaining momentum recently because it is a domestically produced direct diesel replacement with low emissions and relatively high energy content. Biodiesel is relatively straightforward to produce from triglycerides, using well-established transesterification chemistry. The current U.S. biodiesel supply derives largely from soybeans, while a small percentage comes from the more difficult to process waste cooking oil.
Soy crops typically produce 48 gallons of oil per acre, require petroleum-based fertilizers and herbicides, and utilize both water and soil resources. It has been estimated that to replace just 15 percent of the jet fuel used by the domestic airline fleet would take a crop the size of Florida to sustain. Oilseed crops are more popular outside the U.S., particularly in Malaysia and Indonesia where palm oil is a biodiesel source. Palms produce a much higher crop yield of 638 gallons per acre, but the trade off is deforestation and “slash and burn” harvesting methods that release large amounts of the greenhouse gas carbon dioxide into the atmosphere.
Still, the continuing deterioration of our environment from burning fossil fuels, combined with predictions that we have reached peak oil production and estimates that China and India will soon exceed the oil consumption of the U.S., are all driving forces to finding replacements to petroleum-based fossil fuels other than food crops.
  • Why Phytoplankton
Algae and microalgae oils can be converted into biodiesel using the same methods employed for crop seed oils. Algae can be harvested every 24-48 hours, unlike land-based crops, which have much longer growing seasons. And some microalgae have an oil content upwards of 75 percent their dry weight. The added bonus is that algae uses carbon dioxide from the atmosphere in their photosynthesis of triglycerides, meaning an algae farm can be piggy-backed onto a CO2-producing smokestack to effectively eliminate up to 90 percent of the CO2 emissions.
In 1978, the U.S. Department of Energy started the Aquatic Species Program (ASP) aimed at investigating the use of aquatic plants as energy sources. The project was terminated in 1995 when diesel prices dropped to below $1 a gallon. The project made significant contributions to the understanding of algae genetics and lipid production. The ASP cataloged 3,000 strains of algae and found 300 species suitable for oil production.
Several algal farm designs are available for cultivating algae. While the design of the ASP algae production was in open algal ponds, Japan and others researched closed photobioreactor designs. Closed photobioreactors are significantly more expensive, but they eliminate the problem of contamination with unwanted native algae strains.
  • Progress Is Being Seen
This past year has seen a mini-bubble in microalgae development. When GreenFuel Technology Corporation appeared on the map early 2004, microalgae biodiesel was, and still very much is, the “next big thing.” Venture capital started flowing and new start-ups began popping up seemingly overnight. Some companies jumped on board with high crop yields and low-cost scenarios, hoping to profit from the hype. While the capacity for algal biodiesel has been projected to be much larger than possible with crop seed oil, the reality is that few companies have made it past the initial demonstration stage, and no one has produced algal biodiesel on a commercially viable scale.
And with the hype often comes some shenanigans. In November of 2006 De Beers Fuel of South Africa released plans to produce feedstock for 16 billion to 24 billion liters of biofuels a year in a plant producing 144,000 liters per day of biodiesel and being run 25 days a month. It was later discovered that the large-scale plant did not exist and that the company had only 39,000 liters produced in its stocks. It has been estimated that investors lost close to $1 million each for

Sex Reversal of fisH






Sex reversal is the way the development of sex reversal in pairs of male fish which should be directed to the development gonadnya female or vice versa. This technique is done at the time not terdiferensiasinya fish gonad clearly between jantang and females at the time of hatching. Sex reversal alter fish phenotypes but did not alter genotifnya. Sex reversal technique became known in 1937 when estradiol 17 was synthesized for the first time in the United States. At first this technique applied to guppy fish (Poeciliareticulata). Then developed by Yamamato in Japan in the fish medaka (Oryzias latipes). Medaka fish fed females Metiltestosteron will turn into a male. After some research this technique spread control every aspect of another country and applied to various kinds of fish. Originally dinyakini that a good time to do the sex reversal is a few days before hatching (gonads not yet differentiated). This theory was developed because of

Eel Aquaculture

1. BASIC PROBLEMS
Aquaculture in Indonesia is one important component in the fisheries sector. This is related to its role in supporting the national food supply, income and employment creation as well as bring in revenue from exports. Aquaculture also plays a role in reducing the burden of marine resources. In addition, aquaculture is considered as an important sector to support rural economic development.
Fish eel (Anguilla bicolor), Anguilla spp is one kind of fish behavior in the international markets (Japan, Hong Kong, the Netherlands, Germany, Italy and some other countries), so this fish has the potential as export commodities. In Indonesia, fish, eel (Anguilla bicolor) are found in areas bordering the sea in such southern coast of Java, Sumatra's west coast, east coast of Kalimantan, Sulawesi coast, coastal islands of Maluku and West Irian. Unlike in other countries (Japan and European countries), Indonesia's fishery resources eel (Anguilla bicolor) has not been used, but these fish in both size and seed size is relatively abundant amount of consumption.
The utilization rate of fish eel (Anguilla bicolor), locally (within country) is still very low, because not many knew this fish, so most people in Indonesia have been familiar to eat fish, eel (Anguilla bicolor). Similarly, the utilization of fish eel (Anguilla bicolor) for export purposes is still very limited. Resources for fish eel (Anguilla bicolor) whose existence is relatively abundant can be used optimally, it is necessary strategic steps that begins by identifying areas with potential resources eel (seed size and consumption), followed by utilization efforts for both local consumption and for export purposes.
Judging from the large potential for developing aquaculture eel (Anguilla bicolor) in Indonesia, the Indonesian State of the State which has the potential to be an khususya develop fish eel (Anguilla bicolor). In addition Indonesia has a high enough ktersedian seeds in each region, and also 7 out of 18 species of fish, eel (Anguilla bicolor) living or found in Indonesia. Needs fishing eel (Anguilla bicolor) of the world can not be met, of Indonesia was still big opportunities for exporting fish to eel (Anguilla bicolor) and add the State foreign exchange.
But the obstacles faced in rearing fish, eel (Anguilla bicolor) is quite a lot, such techniques have not been found suitable for rearing fish, eel (Anguilla bicolor), and most importantly there is no way to do hatchery fish, eel (Anguilla bicolor) in order to produce seeds good quality. These problems are still looking for any solution or way out for fish, eel (Anguilla bicolor) Indonesia can be exported and the known world.
Some halls of brackish water in Indonesia has been trying to develop techniques of rearing fish eel (Anguilla bicolor) (Anguilla bicolor) is appropriate and efficient. Some halls do have a fish rearing eel (Anguilla bicolor) (Anguilla bicolor) in the pool tarpaulin, ground pond with a bamboo fence, swimming pool floating net or concrete. Can take a sample of fish rearing eel (Anguilla bicolor) (Anguilla bicolor) is done in concrete ponds at the UP-PBAP Bangil.
2. LITERATURE
2.1. Classification and morphology of fish eel (Anguilla bicolor)
Kingdom         : Animalia
Phylum            : Chordata
Class                : Actinopterygii
Order               : Apodes
Family             : Anguillidae
Genus              : Anguilla
Species            : Anguilla bicolor (Anonymous, 2008)
Body shape resembles a snake, can reach 50-125 cm long, dorsal and anal fins merge with tail fins, scales very small, located in the skin, the head is longer than the distance between the anal fin spine. In Indonesia is estimated there are at least 5 (five) fish species of

Utilization of Waste Tofu As Raw Materials Artificial Feeding Alternative To Catfish





Keywords: tofu waste, alternative ingredients, artificial feed, catfish

Knew would be familiar in the ears of the people of Indonesia, this food is the side dishes that have a high protein content. Tofu made from soybeans, which contain high vegetable protein. And the soybean that can not be processed into know-called tofu waste. Tofu waste is often a problem in the manufacturing industry know because know it is a waste pulp production. Although it is considered waste, tofu can be processed into food, food or feed for catfish. In particular, the processing of tofu waste into catfish feed using fermentation process so that the tofu diet containing alcohol. Alcohol content in feed tofu to function as a hormone replacement for sexreversal process, because the use of hormones for the sex reversal unfavorable impact on those who consume the fish that disexreversal.

Know are not necessarily familiar to the people of Indonesia. Tofu is often used as a substitute for side dishes and protein content was high.
Soybean is the manufacture of knowing. Soybeans are used in making this knowing, not all parts can be processed into know. Part of soybean that can not be processed into a knowing, called tofu waste. In industries know, tofu waste is considered waste and not memilliki economic value, so that many of the industry knows that remove the pulp out dsembarang place without any further processing which can increase the selling price of tofu waste. This is what later on cause social problems that seemed difficult to finishing.
And by doing further processing, pulp knew would become a very useful and have high economic value. Tofu waste can be processed into tofu crackers or artificial fish feed based tofu waste. With a high enough protein content in soybean, tofu obviously also has a high protein content as well. Protein is needed by the body for growth, energy, and others.
Processing of waste know as artificial food ingredients for catfish, currently being developed and applied to the cultivation of catfish, especially the cultivation of organic catfish. Tofu waste in addition to having high protein content, as well as material prices, production costs, and cheap production processes. According Setyono (2010, 2), the price per kilogram of tofu waste is Rp. 500; - and

PAKAN ALAMI Skeletonema costatum

PAKAN ALAMI Skeletonema costatum



A. Klasifikasi
Skeletonema costatum memiliki klasifikasi sebagai berikut :
Phyllum : Bacillariophyta
Class : Bacillariophycea
Ordo : Bacillariales
Sub Ordo : Coscinodiscine
Genus : Skeletonema
Species : Skeletonema costatum (Boguis, 1979 )
B. Perkembangbiakan
Perkembangan Skeletonema costatum terbagi menjadi dua cara yaitu : secara Vegetatif dan secara generatif. Secara vegetatif yaitu dengan mengadakan pembelahan sel secara terus menerus apabila kondisi media hidupnya terpenuhi. Sedangkan secara generatif, Skeletonema costatum akan membentuk auxosporo dimana sel yang ukurannya kecil akan kembali dengan ukuran seperti semula.
C. Habitat
Skeletonema costatum hidup di air laut (alam) yang mempunyai intensitas cahaya 500 – 12000 lux. Jika intensitas cahaya kurang dari 500 lux, Skeletonema tidak tumbuh. Sedangkan kisaran salinitas yang optimal adalah 25-29 ppt. Suhu untuk pertumbuhan 20 – 34 oC sedangkan suhu optimalnya adalah 25-27 oC. Sementara itu derajat keasaman (pH) media hidupnya bberkisar 7,5-8.
D. Morfologi
Skeletonema costatum merupakan salah satu jenis phytoplankton dari kelompok diatom. jenis phytoplankton ini memiliki cirri-ciri sebagai berikut :

Minggu, 06 Juni 2010

BUDIDAYA Nannochloropsis sp. PADA SKALA LABORATORI

I. PENDAHULUAN

A. Latar Belakang
Pakan alami adalah sumber pakan yang penting dalam usaha pembenihan ikan, udang, kepiting, dan kerang. Pakan alami merupakan pakan yang sudah tersedia di alam, untuk pakan buatan adalah pakan yang dibuat dari beberapa macam bahan yang kemudian diolah menjadi bentuk khusus sesuai dengan yang dikehendaki. Pemberian pakan yang berkualitas akan memperkecil persentase kematian larva. Dalam budidaya terutama dalam usaha pembenihan, pakan merupakan salah satu faktor pembatas. Secara umum pakan terdiri dari pakan alami dan pakan buatan. Pakan alami terbagi atas fitoplankton, zooplankton dan benthos. Salah satu fitoplankton yang banyak digunakan sebagai pakan utama dalam pembenihan ikan air laut adalah Nannochloropsischloropsis sp. karena memiliki syarat yang dibutuhkan sebagai pakan larva yaitu mudah dicerna, berukuran kecil, nutrisi tinggi mudah dibudidayakan dan cepat berkembang biak (Isnansetyo, 1995).
Hal yang dapat dilakukan untuk memenuhi tersedianya pakan adalah memproduksi pakan alami, karena pakan alami mudah didapatkan dan tersedia dalam jumlah yang banyak sehingga dapat menunjang kelangsungan hidup larva selama budidaya ikan, mempunyai nilai nutrisi yang tinggi, mudah dibudidayakan, memiliki ukuran yang sesuai dengan bukaan mulut larva, memiliki pergerakan yang mampu memberikan rangsangan bagi ikan untuk mangsanya serta memiliki kemampuan berkembang biak dengan cepat dalam waktu yang relatif singkat dengan biaya pembudidayaan yang relatif murah. Upaya untuk memperoleh persyaratan dan memenuhi pakan alami yang baik adalah dengan melakukan kultur fitoplankton misalnya adalah fitoplankton genus Nannochloropsis.




B. Tujuan
1. Mengetahui karakteristik pertumbuhan Nannochloropsis sp. pada skala laboratorium.
2. Mengetahui medium yang paling baik untuk pertumbuhan Nannochloropsis sp. untuk budidaya skala laboratorium

C. Manfaat
Pengamatan yang dilakukan nantinya bermanfaat untuk mengetahui seberapa besar pengaruh dari dua medium yang diberikan yaitu f/2 dan medium walne terhadap pertumbuhan Nannochloropsis sp.


II. METODOLOGI
A. Alat dan Bahan
1) Alat
• Erlemeyer
• Pengaduk
• Botol film
• Mikroskop
• Gelas objek
• Cover glass
• Pipet
• Aerator
• Gelas Ukur
• Toples
• Tissue
• Ember
• Refraktometer
• Kertas pH
2) Bahan
• Air laut
• Air tawar
• Tetraselmis sp.
• Medium f/2 (NaNO3, NaH2PO4, Trace Elemen @ 1 ml dan 0,5 Vitamin)
• Medium walne ( macroelemen, trace elemen @ 1 ml dan 0,1 ml Vitamin)
• Aquades
• Formalin

B. Cara Kerja
1. Menyiapkan alat dan bahan
2. Melakukan pengenceran menggunakan air laut dan air tawar untuk mendapatkan salinitas yang diinginkan.
3. Membuat medium f/2 dan medium walne dengan